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a b s t r a c t

ZnO quantum dots-graphene (QDs-graphene) composite was synthesized using atomic layer deposition
method. A photodetector fabricated from the ZnO QDs-graphene composite and polymers demonstrated
high sensitivity to UV light with a maximum photoresponsivity of 247 A/W at 325 nm. The high
photoresponsivity of this device is attributed to the high active surface to volume ratio of the ZnO QDs-
graphene composite. In addition to the high photoresponsivity, fast transient response with response
time on the order of tenth of milliseconds was achieved, which is attributed to high carrier transport and
collection efficiency through the graphene.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

ZnO is a promising candidate for UV photodetector applications
due to its unique optical and electrical properties including direct
wide band gap (3.37 eV), large exciton binding energy (60 meV) and
strong resistance to high energy proton irradiation [1,2]. Various
ZnO nanomaterials have been used for fabrication of ultraviolet
(UV) photodetector with high photoconductive gain and high
responsivity [3–5]. However, these UV photodetectors suffered poor
transient response (with response time up to minutes), which is
attributed to surface defects and oxygen adsorption/desorption
process of ZnO nanomaterials. Therefore, it is highly desirable to
improve the transient response of ZnO nanomaterial for fast UV
sensing.

By now, different methods have been developed to improve the
transient response of ZnO based UV photodetectors, which include
hydrogen doping, oxygen plasma treating, deposition of carbon
nanotube network, and graphene shell coating [6–9]. Among all of
them, the combination of graphene with ZnO is one of the most
promising methods, as it can effectively improve the carrier trans-
port and collection efficiency of ZnO based UV photodetectors,
leading to a high responsivity and fast transient response [9,10].

In this work, ZnO QDs-graphene composite was synthesized
using the atomic layer deposition (ALD) method for UV photo-
detector applications. By using the ALD method, the ZnO QDs-
graphene composite achieved very high active surface to volume
ratio, which is preferable for photocurrent generation. In addition,

the high carrier mobility of graphene enabled efficient carrier
transport and collection in the composite, leading to a high
performance of this UV photodetector in terms of speed and
photoresponsivity.

2. Experimental

ZnO ALD films were grown directly on graphene powders using a
rotary ALD reactor [11]. For the ZnO ALD, diethyl Zinc (Zn CH2CH3ð Þ2)
and high performance liquid chromatography (HPLC) grade H2O
were obtained from Sigma-Aldrich. The typical growth rate for the
ZnO ALD chemistry is �2 Å per cycle [12,13]. ZnO ALD is performed
using alternating Zn CH2CH3ð Þ2 and H2O exposures:

ZnOHnþZn CH2CH3ð Þ2-ZnOZn CH2CH3ð ÞnþCH3CH3

ZnðCH2CH3ÞnþH2O-ZnOHnþCH3CH3

where the asterisks represent the surface species. Without an
adhesion layer that is provided by Al2O3 ALD, the ZnO ALD is
expected to nucleate and grow at defects on the graphene surface
[14]. Growth at these defects will result in a distribution of ZnO
quantum dots instead of conformal ZnO thin film.

A UV photodetector was fabricated by sandwich the ZnO QDs-
graphene composite in conductive polymers. All the chemicals were
purchased from Sigma-Aldrich and used without further purifica-
tion. First, a thin layer of N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]�1,
(1′-biphenyl)�4,4′-diamine (NPD) with thickness around 50 nm
was deposited onto pre-cleaned ITO glass substrates through spin
coating and then annealed in air at 120 1C for 10 min. The NPD
act as a hole transport/electron blocking layer [15]. Then, the ZnO
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QDs-graphene composite was dispersed in dimethylformamide
(DMF) solvent and spun coated on top of the NPD layer to form
the active region of the device. After that, a thin layer of 2,9-
Dimethyl-4,7- diphenyl-1,10-phenanthroline (BCP) with thickness
around 30 nm was evaporated onto the top of the active region as
an electron transport/hole blocking layer and annealed in air at 5 1C
for 30 min [16]. Finally, aluminum contact with thickness of 150 nm
was deposited on top of the device through e-beam evaporator.

A Carl Zeiss Ultra 1540 dual beam scanning electron microscope
(SEM) was used to determine the morphology of the ZnO QDs-
graphene composite. High resolution transmission electron micro-
scopy (HR-TEM) studies were carried out in a HR-TEM microscope
(JEOL 2011) at an operating voltage of 200 kV. X-ray diffraction
(XRD, PANalytical) pattern of the ZnO QDs-graphene composite was
measured at room temperature using Cu Kα radiation. The typical I–
V characteristics and transient response of the UV photodetector
were measured using a HP4155B semiconductor parameter analy-
zer under dark and with UV illumination at 335 nm. The photo-
responsivity of the device was measured by Shimadzu UV–vis 2550
spectrophotometer with a deuterium lamp (190–390 nm) and a
halogen lamp (280–1100 nm).

3. Results and discussion

Material characterizations: The SEM images of the ZnO QDs-
graphene composite are shown in Fig. 1A and B. It is clear from
Fig. 1B that the ZnO QDs-graphene composite have very high active
surface to volume ratio, as the ZnO QDs are uniformly deposited on

both top and sidewall of the shale like graphene sheet. Fig. 1C is the
HR-TEM image of the composite structure. The average diameter of
the ZnO QDs is estimated to be around 9 nm. The XRD pattern of
the ZnO QDs-graphene composite is presented in Fig. 1D. All the
peaks are identified and assigned according to the Joint Committee
of Powder Diffraction Standards (JCPDS) data. The graphene shell
has a broad (002) peak centered at around 24.51, corresponding to
an interlayer spacing of 0.37 nm [17]. The rest peaks can be well
indexed to the wurtzite ZnO (JCPDS #36-1451).

Device characterizations: The structure and energy band dia-
gram of the UV photodetector is shown in Fig. 2A and B,
respectively. The typical I–V characteristics of the photodetector
are shown in Fig. 3A. The photocurrent to dark current ratio at
�10 V is approximately 230, which is more than 40 times higher
than that of at 10 V. This is attributed to lower dark current under
reverse bias condition, which can be understood by referring to
the energy band diagram in Fig. 2B. Under reverse bias condition,
the high barrier between BCP and Al together with BCP's hole
blocking ability, can effectively impede hole injection from the Al
contact. Similarly, electron injection from the ITO side can be
greatly suppressed due to the high barrier between ITO and NPD,
together with NPD's electron blocking ability. To the contrary,
under forward bias condition, the electrons and holes can easily be
injected from Al to BCP and from ITO to NPD, leading to higher
dark current compared to reverse biased condition.

The transient response of the device is shown in Fig. 3B. The rise
time and fall time of the device were measured to be around 14 and
11 ms, respectively. The fast transient response of the photodetector
in this work is attributed to improved carrier transport process

Fig. 1. (A and B) SEM images and (C) HR-TEM image of the ZnO QDs-graphene composite synthesized via ALD method. (D) XRD pattern of the ZnO QDs-graphene composite.
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between ZnO QDs and graphene, which has been reported in our
previous work [9]. Briefly, it is energetically favorable for photo-
generated electron to transfer from the conduction band of ZnO to
the graphene due to the fact that the electron affinity of ZnO QDs is
lower than the work function of graphene. Less accumulation of the
electrons in the active region is expected because of the high carrier
mobility of graphene. Therefore, the carrier transport efficiency can
be improved, leading to a fast transient response.

The photoresponsivity of the device, defined as photocurrent
per unit of incident optical power, is shown in Fig. 4. A maximum

photoresponsivity 247 A/W at 325 nm was observed under �10 V
bias, which is more than three orders of magnitude larger than
those of commercial GaN or SiC photodetectors (o0.2 A/W) [4].
The high photoresponsivity of this device is attributed to the high
active surface to volume ratio, together with the high carrier
transport and collection efficiency through graphene. The inset of
Fig. 4 shows the external quantum efficiency (EQE) of the photo-
detector calculated using the equation: EQE¼R� hv/q, where hv is
the energy of the incident photon in electronvolts, q is the electron
charge and R is the photoresponsivity of the UV photodetector.

4. Conclusion

In conclusion, ZnO QDs-graphene composite was synthesized
using atomic layer deposition method. A UV photodetector fabri-
cated from the ZnO QDs-graphene composite and polymers
demonstrated fast transient response and high responsivity, which
is attributed to high carrier transport and collection efficiency,
together with the ultrahigh active surface to volume ratio of the
ZnO QDs-graphene composite material.

Acknowledgments

The authors gratefully acknowledge support from National
Security Technologies through NSF Industry/University Cooperative
Research Center Connection One. The authors also acknowledge the
National Science Foundation Smart Lighting Engineering Research
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